3.482 \(\int \tan ^m(c+d x) (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=127 \[ \frac{(a A-b B) \tan ^{m+1}(c+d x) \text{Hypergeometric2F1}\left (1,\frac{m+1}{2},\frac{m+3}{2},-\tan ^2(c+d x)\right )}{d (m+1)}+\frac{(a B+A b) \tan ^{m+2}(c+d x) \text{Hypergeometric2F1}\left (1,\frac{m+2}{2},\frac{m+4}{2},-\tan ^2(c+d x)\right )}{d (m+2)}+\frac{b B \tan ^{m+1}(c+d x)}{d (m+1)} \]

[Out]

(b*B*Tan[c + d*x]^(1 + m))/(d*(1 + m)) + ((a*A - b*B)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -Tan[c + d*x]
^2]*Tan[c + d*x]^(1 + m))/(d*(1 + m)) + ((A*b + a*B)*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, -Tan[c + d*x]^
2]*Tan[c + d*x]^(2 + m))/(d*(2 + m))

________________________________________________________________________________________

Rubi [A]  time = 0.139204, antiderivative size = 127, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.138, Rules used = {3592, 3538, 3476, 364} \[ \frac{(a A-b B) \tan ^{m+1}(c+d x) \, _2F_1\left (1,\frac{m+1}{2};\frac{m+3}{2};-\tan ^2(c+d x)\right )}{d (m+1)}+\frac{(a B+A b) \tan ^{m+2}(c+d x) \, _2F_1\left (1,\frac{m+2}{2};\frac{m+4}{2};-\tan ^2(c+d x)\right )}{d (m+2)}+\frac{b B \tan ^{m+1}(c+d x)}{d (m+1)} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^m*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(b*B*Tan[c + d*x]^(1 + m))/(d*(1 + m)) + ((a*A - b*B)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -Tan[c + d*x]
^2]*Tan[c + d*x]^(1 + m))/(d*(1 + m)) + ((A*b + a*B)*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, -Tan[c + d*x]^
2]*Tan[c + d*x]^(2 + m))/(d*(2 + m))

Rule 3592

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(B*d*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3538

Int[((b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*T
an[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Tan[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x] && NeQ
[c^2 + d^2, 0] &&  !IntegerQ[2*m]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \tan ^m(c+d x) (a+b \tan (c+d x)) (A+B \tan (c+d x)) \, dx &=\frac{b B \tan ^{1+m}(c+d x)}{d (1+m)}+\int \tan ^m(c+d x) (a A-b B+(A b+a B) \tan (c+d x)) \, dx\\ &=\frac{b B \tan ^{1+m}(c+d x)}{d (1+m)}+(A b+a B) \int \tan ^{1+m}(c+d x) \, dx+(a A-b B) \int \tan ^m(c+d x) \, dx\\ &=\frac{b B \tan ^{1+m}(c+d x)}{d (1+m)}+\frac{(A b+a B) \operatorname{Subst}\left (\int \frac{x^{1+m}}{1+x^2} \, dx,x,\tan (c+d x)\right )}{d}+\frac{(a A-b B) \operatorname{Subst}\left (\int \frac{x^m}{1+x^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{b B \tan ^{1+m}(c+d x)}{d (1+m)}+\frac{(a A-b B) \, _2F_1\left (1,\frac{1+m}{2};\frac{3+m}{2};-\tan ^2(c+d x)\right ) \tan ^{1+m}(c+d x)}{d (1+m)}+\frac{(A b+a B) \, _2F_1\left (1,\frac{2+m}{2};\frac{4+m}{2};-\tan ^2(c+d x)\right ) \tan ^{2+m}(c+d x)}{d (2+m)}\\ \end{align*}

Mathematica [A]  time = 0.433015, size = 108, normalized size = 0.85 \[ \frac{\tan ^{m+1}(c+d x) \left (\frac{(a A-b B) \text{Hypergeometric2F1}\left (1,\frac{m+1}{2},\frac{m+3}{2},-\tan ^2(c+d x)\right )}{m+1}+\frac{(a B+A b) \tan (c+d x) \text{Hypergeometric2F1}\left (1,\frac{m+2}{2},\frac{m+4}{2},-\tan ^2(c+d x)\right )}{m+2}+\frac{b B}{m+1}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^m*(a + b*Tan[c + d*x])*(A + B*Tan[c + d*x]),x]

[Out]

(Tan[c + d*x]^(1 + m)*((b*B)/(1 + m) + ((a*A - b*B)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, -Tan[c + d*x]^2
])/(1 + m) + ((A*b + a*B)*Hypergeometric2F1[1, (2 + m)/2, (4 + m)/2, -Tan[c + d*x]^2]*Tan[c + d*x])/(2 + m)))/
d

________________________________________________________________________________________

Maple [F]  time = 0.797, size = 0, normalized size = 0. \begin{align*} \int \left ( \tan \left ( dx+c \right ) \right ) ^{m} \left ( a+b\tan \left ( dx+c \right ) \right ) \left ( A+B\tan \left ( dx+c \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^m*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

int(tan(d*x+c)^m*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (b \tan \left (d x + c\right ) + a\right )} \tan \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^m*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)*tan(d*x + c)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (B b \tan \left (d x + c\right )^{2} + A a +{\left (B a + A b\right )} \tan \left (d x + c\right )\right )} \tan \left (d x + c\right )^{m}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^m*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

integral((B*b*tan(d*x + c)^2 + A*a + (B*a + A*b)*tan(d*x + c))*tan(d*x + c)^m, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (A + B \tan{\left (c + d x \right )}\right ) \left (a + b \tan{\left (c + d x \right )}\right ) \tan ^{m}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**m*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x)

[Out]

Integral((A + B*tan(c + d*x))*(a + b*tan(c + d*x))*tan(c + d*x)**m, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (b \tan \left (d x + c\right ) + a\right )} \tan \left (d x + c\right )^{m}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^m*(a+b*tan(d*x+c))*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(b*tan(d*x + c) + a)*tan(d*x + c)^m, x)